
Final Exam Review

Final Exam Concepts
❖ Recursion versus iteration
❖ Tail-recursion
❖ Higher order functions
❖ First class functions
❖ Quote and symbols
❖ Scope and binding environments
❖ Case analysis using match
❖ Defining data structures using struct
❖ Types
❖ Store-passing style
❖ Evaluation strategy

Recursion versus tail-recursion

Tail-recursive: a recursive function in which no
computation is done after the return of the
recursive call (all the work is inside the
recursive call, so there’s no need to build a
recursive stack).

Higher-order functions

A higher-order function is a function that takes
another function as an argument.

First-class functions

A language has first-class functions if it treats
functions the same as other values in the
language. Critically, it allows them to be (1)
unnamed and (2) to appear in the same
syntactic environments as other values (as
arguments to functions, as return values, etc).

Quote and symbols

Quote is a way to express data literals. An
expression that is quoted is turned into a
symbol and is not evaluated.

Scope and binding environments

An environment is a table of bindings that
associate variables with values.

A variable is bound in the scope of an
environment.

Example binding environments: functions, let,
letrec, match clauses that name
subexpressions…

Case analysis using match

Match is a language construct that makes case
analysis easier. Case analysis means breaking a
procedure into a finite set of cases that define
the result based on the conditions.

Types

Types define an ontology: all of the types of a
language, taken together, describe what kinds of
things are in the language.

A type can be thought of a collection of values for
which a particular group of functions is well-defined.

The term type is often reserved for data structures
that come predefined in the language; however, user-
defined data structures can also be considered types.

Defining data structures
Struct is a Racket language construct for defining
new data structures. It specifies the number and
names of the data structure’s fields, and provides
constructor, member, and field-getter functions.

(struct my-data-struct (field1 field2))

The struct constructor does not validate its input.

Defining data structures

Store-passing style is a way of mimicking
mutation in a pure functional programming
language. A store is a kind of dummy
memory; variables are always evaluated
alongside a store. By changing which store is
passed along with the variable, it appears that
the value of the variable itself changes.

Evaluation Strategy

Eager evaluation
❖ Call-by-value (Racket, Python, most

languages)

Lazy evaluation
❖ Call-by-need (#lang lazy; Haskell)
❖ Call-by-name

Call-by-value evaluation

Arguments are evaluated before they are given
to the function.

>(define (foo x)

 (void))

>(foo (println “hi!”))

hi!

Call-by-need evaluation
Arguments are evaluated only as necessary.

>(define (foo x)

 (void))

>(foo (println “hi!”))

(x is never used, so the print statement is not evaluated)

Interpreter project
You should be familiar with the structure of
our interpreter project.
❖ How did we handle primitive procedures?
❖ How did we evaluated procedure

applications?
❖ How would you write the eval function for

a language construct (not, if, etc)?

Interpreter project
You should also be able to explain the motivation
for some of the decisions we made.
❖ Why did we use mutable lists to model

environments?
❖ Why did we use Racket’s built-in addition

operations rather than defining our own?
❖ Why did we define our own version of map and

filter instead of using Racket’s built-in versions?

