
Computation Graph Languages
December 4, 2018

Computation Graph

A computation graph is a directed graph
where nodes represent operations and
variables and edges define the order of
computation.

Computation Graph

x ay

z=x+y b=a*a

c=b+z

Probabilistic Programming Languages
Probabilistic programming languages are
useful for problems that require reasoning
under uncertainty.

Key concept: the programs are probability
models.

Probability Models
A probability model is a formal
representation of a problem that involves
non-determinism (randomness).

Three key parts: sample space, events,
and probabilities for the events.

Lucky Charms cereal
Imagine that we draw a single piece of
Lucky Charms cereal.

Source: www.village-bakery.com Source: https://www.walmart.com

http://www.village-bakery.com
https://www.walmart.com

Lucky Charms cereal
Imagine that we draw two pieces of
Lucky Charms cereal out of a bowl.

Source: www.village-bakery.com

Events:
Picking a horseshoe
+ a rainbow
Picking a rainbow +
a letter
Picking two letters
…

http://www.village-bakery.com

Lucky Charms cereal
Sample space (set of all outcomes):
horseshoe + rainbow
rainbow + a letter
two letters
two rainbows
two horseshoes
horseshoe + letter
….

Lucky Charms cereal
Probabilities:
p(horseshoe) = 0.1
p(rainbow) = 0.2
p(letter) = 0.7
p(shooting star) = 0.0
p(balloon) = 0.0
…

The probability of the sample space
always sums to 1.

Probabilistic Programming Languages
Key concept: the programs are probability
models.

PPLs have stochastic elements whose
values are sampled on every run of the
program. The meaning of the program is
the probability of every possible
execution of the program.

Probabilistic Programming Languages
Two main modes: prediction and
inference. Prediction uses observed causes
to guess unseen results; inference uses
observed results to try to understand
unseen causes.

Probabilistic Programs as Computation Graphs

From a computation graph point-of-view,
prediction is the forward propagation of
data through the graph, while inference is
the backwards propagation of data.

Figaro
Figaro is a probabilistic programming
language that uses Scala syntax.

This is another example of a domain-specific
language embedded in a general-purpose
language.

Elements

val	
 sunnyToday	
 =	
 Flip(0.2)	

Flip(0.2) is an instance of Element[Boolean].

Scala variable Figaro element
True with

 20% chance

Elements

val	
 sunnyToday	
 =	
 Flip(0.2)

Morning greeting application
Every morning, I wake up, lean out my
window, and shout a greeting.

When the weather is good, I usually say,
“Hello world!” or “Howdy, universe!”.

When the weather is bad, I’m grumpier.
Sometimes I say, “Hello world!”, but
sometimes I say, “Oh no, not again.”

Morning greeting application
Let’s see how we would model two days of my
morning routine.

There are three tasks that we want our model to be
able to do:

1. Predict the greeting today

2. Given an observation of the greeting, infer the
weather

3. Learn from an observation of today’s greeting in
order to predict tomorrow’s greeting.

Elements
An element is a language construct that represents a
process that probabilistically produces a value.

Like Variables in Tensorflow, the value of an
element isn’t known until the computation graph is
run.

Unlike Tensorflow Variables, however, Figaro
elements let you specify the probabilistic process
used to sample a value more explicitly.

Probabilistic Programming Languages
Figaro is one of the newest, most powerful
probabilistic programming languages, partly
because of its strong interface with Scala.

Older statistical modeling languages:

STAN, BayesiaLab

Others include:

Church, WebPPL

Applications
Probabilistic programming languages are relatively new
(~2000), and we’re still figuring out useful applications for
them.

Example applications:
❖ evaluating online game players (Microsoft)
❖ identifying nuclear test treaty violations (Stuart Russell)
❖ identifying malware (Charles River Analytics)
❖ modeling language learning and conversation dynamics

(various folks at Stanford and MIT)

