Interpreter Project Wrap-up

November2 7, 2018

Metacircularity

A metacircular interpreter is one that can
interpret itself.

In order to make our interpreter metacircular,
we would have to make some changes.

What language features do we use in defining
our interpreter that we haven’t implemented?

Metacircularity

What language features do we use in defining
our interpreter that we haven’t implemented?

Letrec
(define (foo x)) short-cut
Match (this is hard!)

Metacircularity

We can start by testing our interpreter with
other, less complex programs.

We can now run most of HW2 in our
interpreter, for instance!

Verification Languages

November2 7, 2018

Introducing Dafny

Dafny is a programming language that supports
program verification.

A program in Dafny has two components:

The implementation of your algorithm, and
A formal specification that describes what it
means for the implementation to be correct.

The Dafny compiler checks that the
implementation matches the specification for all
possible inputs and outputs.

Dainy demo

['m using an online interface to Dafny:
https://risedfun.com/dafny

You can also install the language and run
it locally if you want.

https://rise4fun.com/dafny

Example: the Midpoint method

Things to note: method Midpoint(m : int, n :

Dafny calls int) returns (r : int)
functions {
methods. var delta := (n - m) / 2;

Dafny has types. @ return m + delta;
Dafny lets you }

name the return
value. method Main()

{
var r := Midpoint(1, 5);
print r;
pr'int] \nu;

}

What does it mean for Midpoint to be correct?

The result (r)

should lie , , .
between m method Midpoint(m : int,
and n : int) returns (r : int)

' ensures r > m && r < n;

{

We C_an | var delta := (n - m) / 2;
specity this return m + delta;
using an)
ensures

clause.

T'he Dainy compiler signals an error

Dafny says the postcondition may not hold.

Dafny is not certain that the ensures clause is
wrong. Instead, Dafny cannot show that it is
not wrong.

S0, we need to figure out if there is a genuine
problem and help Dafny figure this out.

T'wo ways to address the problem

The code assumes thatm < n. But,if m > n

then delta will be negative and the result will
be less than n.

We can fix this in two ways:

We can introduce an if statement to deal
with the case wherem > n.

We can promise Dafny that we will never
call Midpoint withm > n.

A precondition for Midpoint

The requires clause
specifies a

precondition method Midpoint(m : int,

n : int)

Dafny verifies that returns (r : int)

whenever some other F€qULlreES M < n;

method calls ensures r > m && r < n,
Midpoint, the caller 1
will satisfy the var delta := (n - m) / 2;
precondition. return m + delta;

}

This should work!

The Dainy compiler signals the same error

Dafny says the postcondition may not hold
despite the precondition.

Unfortunately, it is exactly the same error
message.

To get a little more insight, we can split the
postcondition into two postconditions.

Muluaple post-conditions

To get a little more insight, we can split the
ensures clause into two clauses.

The semantics is exactly the same, but we get
a more informative error.

Dafny was able to verify one postcondition:
r < n.

But it cannot show that r > m is not wrong.

Integer division

Due to integer division, delta may be zero:
Midpoint(9, 10)
=9+ ((10-9)/2)

=9+ (1/2)
=9+0

Kuclid’s division algorithm

This algorithm does
division by repeated
subtraction.

Note that Dafny lets a
method return multiple
values. Here, we
return the quotient and
the remainder.

method Euclid(m
int) returns (g

int)

{

¥

q -
r.

while

{

¥

ro:
q :

=

9;

Zr >= n)

: 1nt, n :
: int, r :

Kuclid’s division algorithm

method Euclid(m : int, n :

This algorithm does int) | |
division by repeated returns (q : int, r : int)
subtraction. {

q := 9;
Note that Dafny lets a o=
method return multiple while (r > n)
values. Here, we { _ :
return the quotient and ~ gf
the remainder.) =875

Totality checking

Dafny immediately complains that it cannot
prove that the method always terminates.

In Dafny, methods are total: i.e., they always
terminate with a return and do not loop forever

or throw exceptions.

We will address this problem at the very end.

A specification for the division algorithm

What does it mean for division to be correct?

m==qgq*n+r
and
r<n

But, Dafny is not happy with these post-
conditions. What could be wrong?

Division by zero? Negative numbers?

Let's use preconditions to rule out negative
numbers and division by zero.

Dafny still raises errors, but it no longer
complains that the method may not terminate.

Dafny needs a little help.
It needs to reason about all possible program
executions without actually running the loop.

Loop Invariants

We need to give Dafny a loop invariant: a
property that is true before and after each loop
iteration.

There are many different possible invariants.
Finding the right invariant will help Dafny prove
the postconditions.

Coming up with a loop invariant requires
Intuition and experience.

Loop Invariants

method Euclid(m : int, n : int)
returns (g : int, r : int)
requires n > 0;

requires m >= 0;

ensures m == g * n + r;
ensures r < n;
{
q := 0;
ro:=m;
while (r > n)
{
r:=r - n;
q i=q + 1;
}

Loop Invariants: on loop entry

In this case, m==q * n
+ r, which is exactly a
post-condition, Is a loop
invariant that does
work.

Notice that initially:
g=0,r=m, thus

method Euclid(m : int, n : int)
returns (gq : int, r : int)
requires n > 0;
requires m >= 0;
ensures m == g * n + r;
ensures r < n;
{
q := 9;
r o= m;
while (r > n)
invariant m == q * n + r;
{
r:=r - n;
q:=9g+1;
}

}

Loop Invariants:
m=qgq n+r

The first statement in the
loop subtracts n from r:
m=q*n+(r-n)

The second statement In

the loop adds 1 to q:

m=(q+1)"n+(r-n)
=q*n+n+r-n
=q*n+r

Therefore, it Is an
Invariant!

after each 1teration

method Euclid(m : int, n : int)
returns (q : int, r : int)
requires n > 0;

requires m >= 0;

ensures m == g * n + r;
ensures r < n;
q := 9;
i=m;
while (r > n)
invariant m == q * n + r;
r:=r - n;
q:=q9qg+1;

¥

Sull Broken

We still have errors!

Notice that Dafny is able to verify one post-

condition:
m==4qg *n+r

But, the other post-condition: r <n
IS not verifiable.

Is the program actually correct?

Almost done

The program was actually broken!

To fix it, we change the loop condition from
r > ntor >= n.

Complete

As a final step, we need to help Dafny prove
that the loop terminates.

We do this by specifying "decreases r’;
r decreases on each loop iteration until it
reaches zero.

Final version

method Euclid(m : int, n : int)

returns (g : int, r : int)
requires n > 9;
requires m >= 0;
ensures m == g * n + r;
ensures r < n;

{
g 0;
ro:=m;
while (r >= n)
decreases r;

invariant m == q * n + r;
{

r :=r - n;

q =g+ 1;
}

}

Summary

Why verity software? Certain software systems are safety-
critical. E.g., avionics, medical equipment, and cryptography:.

Astrée has been used to verify some of the software in Airbus jets and
satellites.

F* has been used to verify the certain cryptography libraries in Firefox.

Coq has been used to verify parts of the BoringSSL cryptography library.

Ditferent approaches to verification:

Dafny: write verified code in a language designed for verification

Astrée: write code in a (small!) subset of C, which the Astrée verifier can
handle

Coq: write code and proofs in Coq, then extract verified code to another
language (e.g., C)

http://www.astree.ens.fr
https://www.fstar-lang.org/
https://blog.mozilla.org/security/2017/09/13/verified-cryptography-firefox-57/
https://coq.inria.fr
https://boringssl.googlesource.com/boringssl/+/HEAD/third_party/fiat/

