
Computation Graph Languages
November 29, 2018



Computation Graph

A computation graph is a directed graph 
where nodes represent operations and 
variables and edges define the order of 
computation.



Computation Graph

x ay

z=x+y b=a*a

c=b+z



Tensorflow
Tensorflow is a deep learning library for 
Python. 

It is a computation graph language: A 
Tensorflow program defines a 
computation graph (and methods for 
running the graph).



Tensor

A tensor is a multidimensional array.

Vectors, scalars, and matrices are all 
tensors.



Computation Graph as Program
A Tensorflow program defines a 
computation graph (as well as methods 
for running it). 

Some of the nodes in the graph are 
operators; others are place-holders.



Computation Graph as Program

x ay

z=x+y b=a*a

c=b+z



Placeholders
In order to know the value of a 
placeholder, it is necessary to run the 
computation graph (or some part of it).



Placeholders
Computation graph languages are 
designed for probabilistic problems: they 
are not guaranteed to produce the same 
result every time they are run.

Because of this, the value of a placeholder 
is only known for a particular session (run 
of the computation graph).



Session
A session is a particular run through the 
computation graph. Any probabilistic 
inputs are initialized randomly each 
session. 

Different sessions can produce different 
results.



Linear Regression
Imagine that we want to predict cat scores 
at the American Cat Fanciers Association 
annual cat show.

We have three kinds of information for 
each cat: age, length of whiskers, and 
glossiness.



Linear Regression
In linear regression, we try to model the 
output as a linear combination of the 
inputs (age, whisker length, and 
glossiness).

score = w1*age + w2*whisker + w3*gloss



Linear Regression
We have the scores and the input values. 
Our job is to find the combination of 
weights that best fits the data.

score = w1*age + w2*whisker + w3*gloss



Linear Regression
Once we learn weights w1, w2, and w3, we 
can use them to predict unknown scores 
(given input values).

score = w1*age + w2*whisker + w3*gloss



Learning the weights
How do we learn the weights?

We initialize them randomly and then 
make small updates based on 
observations of our training data.

score = w1*age + w2*whisker + w3*gloss



Learning the weights
Based on our current guesses for the 
weights, we make a prediction about the 
score for a given set of inputs.

If this score differs from the actual score, 
we update the weights accordingly.



Gradient Descent
How do we know how to adjust the 
weights? 

We use gradient descent to portion out 
the blame for the error.



Public Domain, https://commons.wikimedia.org/w/index.php?curid=521422

https://commons.wikimedia.org/w/index.php?curid=521422


Backpropagation
We run a computation graph forwards to 
make a prediction.

Then we calculate the difference between our 
prediction and the actual output.

The error (the difference between the 
predicted and observed output) is 
backpropagated through the graph.



Computation graph training
In general, training computation graphs 
involves the following steps:

1. Forward propagation of values to make a 
prediction.

2. Error calculation via the loss function.

3. Backward propagation of the error to 
update the weights.



Up next: more computation graphs!
Next week we’ll look at an example of 
another kind of programming languages 
that define computation graphs: 
probabilistic programming languages.


