
Object-Oriented Programming in a
Functional Language

October 16, 2018

Variable assignment

Java
int i = 10;

Environment Memory

i : 0x056
0x056 0x057 0x058

10

Variable update

Java
int i = 10;

i = 27;

Environment Memory

i : 0x056
0x056 0x057 0x058

10

27

State
account123: $100

> (withdraw account123 25)

> (balance? account123)
$75

> (transfer account123 account987 30)

> (balance? account123)
$45

State
account123: $100

> (withdraw account123 25)

> (balance? account123)
$75

> (transfer account123 account987 30)

> (balance? account123)
$45

Referential transparency
In a language like Racket, which is referentially
transparent, a variable always means the same thing
regardless of where it occurs in the program.

This means that its value can be freely substituted in
without regard to the context it appears in.

Simulating mutation
Mutation gives us a way of updating what is stored
in memory at a given address.

Can we simulate mutation?

Components
❖ Declare a variable name and a location for its

value
❖ Update the value stored at that location

Store-passing style

Store-passing style is a way of simulating
mutation by simulating updates to memory.

Instead of directly addressing into memory to
get the value of a variable, we look up the
value of a variable in a store.

Store-passing style
Store

1 : $50
2 : $10

3 : $25

> (define account1 (store 1))

> (define account2 (store 2))

> (define account3 (store 3))

> account2

$10

Program

Store-passing style
We still don’t have a way of modifying the value of an
entry in the store.

But… we can just return a different store!

In other words, we can fake a mutable store by having
different versions of the store (copies).

This works for stores, but not for memory (because we
can’t tell functions which version of memory to use).

