
Evaluation Strategy
October 23, 2018

Properties of functions
❖ Perform an operation
❖ Delay evaluation

Thunking

One way to delay evaluation of an expression
is to thunk it, or wrap it in a function with no
arguments.

That way, the expression won’t be evaluated
until the function is applied.

Call-by-value

Why can’t we define our own version of if?

Because Racket is a call-by-value language: it
evaluates function arguments and passes their
value into the function body.

Call-by-name

Another strategy is to pass in the
uninterpreted arguments to the function, and
make the function itself handle their
evaluation. This is known as call-by-name
evaluation.

In order to properly define if, we need for the
arguments to be passed in uninterpreted.

What is evaluation?
(first (map (lambda (x) (factorial x)) lst) (list 1 2 3))

(first (map (lambda (x) (factorial x)) (list 1 2 3)))

(first (list (factorial 1) (factorial 2) (factorial 3)))

(first (list (factorial 1) (* 2 (factorial 1))(* 3 (factorial 2)))))

(first (list 1 (* 2 1)(* 3 (* 2 (factorial 1)))))

(first (list 1 2 (* 3 (* 2 1))))

(first (list 1 2 6))

1

Throw-back: order of operations
In elementary school, you might have learned a
rule about the order of operations for arithmetic:

Please Excuse My Dear Aunt Sally
(parentheses, exponents, multiplication, division, addition, subtraction)

Parentheses specify scope, but the others
specify evaluation order.

Throw-back: order of operations
Parentheses specify scope, but the others
specify evaluation order: first evaluate the
exponentiation, then the multiplication, then
the division…

The evaluation strategy of a programming
language tells you what things get done first.

What really happens here?
(define (factorial n)
 (letrec ((helper (lambda (x res)
 (if (= x n)
 res
 (helper (+ 1 x) (* x res)))))
 (helper 1 1)))

(+ (square (* (factorial (+ 1 2)) 5)) 10)

What really happens here?
One option: work from the outside inwards
> (+ (square(* (factorial (+ 1 2)) 5)) 10)
 ((square (* (factorial (+ 1 2)) 5)) + 10)
 ((* (factorial (+ 1 2)) 5) * (* (factorial (+ 1 2)) 5)) + 10)
 (((factorial (+ 1 2)) * 5) * ((factorial (+ 1 2))* 5)) + 10)
 (((* 1 (* 2 (+ 1 2))) * 5) * ((* 1 (* 2 (+ 1 2)))* 5)) + 10)
 (((* 1 (* 2 3)) * 5) * ((* 1 (* 2 3))* 5)) + 10)
 ((((* 2 3)* 1) * 5) * (((* 2 3) * 1) * 5)) + 10)
 ((((2 * 3)* 1) * 5) * (((2 * 3) * 1) * 5)) + 10)
 ((((6 * 1) * 5) * ((6 * 1) * 5)) + 10)
 (((6* 5) * (6 * 5)) + 10)
 ((30 * 30) + 10)
 (900 + 10)
 910

What really happens here?
Another option: work from the inside outwards

> (+ (square(* (factorial (+ 1 2)) 5)) 10)
 (+ (square (* (factorial (+ 1 2)) 5)) 10)
 (+ (square (* (factorial 3) 5)) 10)
 (+ (square (* (* 1 (* 2 3)) 5)) 10)
 (+ (square (* (* 1 6) 5)) 10)
 (+ (square (* 6 5)) 10)
 (+ (square 30) 10)
 (+ 900 10)
 910

Eager Evaluation
Evaluate expressions as soon as possible

Eager Evaluation
(first (map (lambda (x) (factorial x)) lst) (list 1 2 3))

(first (map (lambda (x) (factorial x)) (list 1 2 3)))

(first (list (factorial 1) (factorial 2) (factorial 3)))

(first (list (factorial 1) (* 2 (factorial 1))(* 3 (factorial 2)))))

(first (list 1 (* 2 1)(* 3 (* 2 (factorial 1)))))

(first (list 1 2 (* 3 (* 2 1))))

(first (list 1 2 6))

1

Lazy evaluation
Evaluate expressions only when needed

Lazy Evaluation
(first (map (lambda (x) (factorial x)) lst) (list 1 2 3))

(first (map (lambda (x) (factorial x)) (list 1 2 3)))

(first (list (factorial 1) (factorial 2) (factorial 3)))

(first (list (factorial 1) (* 2 (factorial 1))(* 3 (factorial 2)))))

(first (list 1 (* 2 1)(* 3 (* 2 (factorial 1)))))

(first (list 1 2 (* 3 (* 2 1))))

(first (list 1 2 6))

1

Lazy Evaluation
(first (map (lambda (x) (factorial x)) lst) (list 1 2 3))

(first (map (lambda (x) (factorial x)) (list 1 2 3)))

(first (list (factorial 1) (factorial 2) (factorial 3)))

(factorial 1)
1

Call-by-need

Wait to evaluate an expression until it is
needed, but once it is evaluated, remember its
value.

Exercise: endless string list
Exercise: write a function that takes a single
string as an argument and creates an endless
list of that string.

Call it endless-strings.

Evaluation strategies
❖ Eager

• Call-by-value (Racket, Java*, C)
❖ Lazy

• Call-by-need (Haskell, R)
• Call-by-name (Algol)

*Java objects are complicated

