
Case analysis
October 2, 2018

What is case analysis?

❖ What do I want to do if the input is a number?

❖ What do I want to do if the list is empty?

❖ What do I want to do if the test evaluates to true?

Breaking a problem into different situations:

Recursion is case analysis

❖ Base case

❖ Inductive case

Is-sorted function

The is-sorted function from Lab 1 had three cases:

❖ The list contained strings
❖ The list contained numbers
❖ The list contained a mix of numbers and strings

(or other datatypes)

We used if/cond to check these conditions, but there is
also a special case-matching language feature: match

Match

> (match 5
 (5 “five”) ; Check if x is 5
 (10 “ten”) ; Check if x is 10
 (20 “twenty”)) ; Check if x is 20

“five”

Special match syntax: (? exp pat)

(? exp pattern) is a special feature of match.
It checks whether exp applied to pattern is true.

This is useful for type-checking, since pattern
refers to the value of the matched item, not its
type.

Special match syntax: _

_ is the match equivalent of else in a
conditional: it matches any expression.

You should only use _ in your last case, since
otherwise, none of your other cases will be
evaluated.

Special match syntax: …
You can omit named sub-expressions in a case
using …

Ellipsis acts like the Kleene star (*) in regular
expressions.

 (match lst
 ((list 1) “length 1”)
 ((list x … 10) “length 10”))

Exercise: check for duplicates
Write a function that takes a list of strings and
checks whether the first item in the string ever
re-occurs:

> (dups? '("cat" "is" "cat"))
#t
> (dups? '("cat" "says" "meow"))
#f

Exercise: generic add

Write a generic addition function using match:

If given a list of strings, your function should
join them together into a single string.
If given a list of numbers, your function
should sum them together.
If given any other kind of list, your function
should return void.

Returning functions

The right-hand-side of match cases can return
any kind of Racket expression, including
functions.

(match x
 (0 +)
 (1 *))

