
Streams
October 23, 2018

Eager Evaluation
Evaluate expressions as soon as possible

Lazy evaluation
Evaluate expressions only when needed

Streams
As we saw last week, lazy evaluation allows
us to define infinitely long collections of data.
These are called streams.

Streams
A stream is a sequence of data elements that
are made available over time.

To define a stream, you need to know how to
get the next item in the sequence, but you
don’t need to be able to enumerate all items.

Streams
For instance, on Tuesday we defined a stream
of (positive) integers:

> (define (integers n)
 (cons n (integers (+ n 1))))

> (integers 0)
(cons 0 (cons 1 (cons 2 (cons 3 …

Exercise: endless string list
Exercise: write a function that takes a single
string as an argument and creates an endless
list of that string.

Call it endless-strings.

Streams

> (define (endless-strings n)
 (cons str (endless-strings str)))

> (endless-strings “cat”)
(cons “cat” (cons “cat” (cons “cat” …

Streams
We were able to define streams because we were
using lazy evaluation. If we tried to use these
functions in ordinary Racket, they would never
terminate.

However, there is an implementation of streams in
base Racket as well.

You can load it using (require racket/stream)

Streams in Racket
We can define new streams using the (stream-cons)
function.

This is equivalent to cons in the lazy version of
Racket that we used last week.

(define (plus-1 n)
 (stream-cons n (plus-1 (+ n 1))))

Exercise: stream of longer strings
Define a stream where the first element is a
string and each successive element contains
one more copy of that string than the previous
element:

“a”, “aa” “aaa”, “aaaa”, “aaaaa” , “aaaaaa” …

Higher-Order Functions on Streams

Map and filter are well-defined on streams, but fold
only terminates on finite streams.

Map takes a stream and returns a new stream.
Just like in map for lists, there is a 1-to-1
correspondence between the items of the original
stream and the return stream.

Higher-Order Functions on Streams
Map and filter are well-defined on streams, but fold
only terminates on finite streams.

Filter takes a stream and function f and returns the
stream consisting of all items that satisfy the
function f.

It is well-defined if there is at least one item in the
stream that satisfies f.

Exercise: factorial stream

Define the stream of factorials starting with 1:

1, 2, 6, 24, 92 , …

Midterm Concepts
❖ Recursion versus iteration
❖ Tail-recursion
❖ Higher order functions
❖ First class functions
❖ Quote and symbols
❖ Scope and binding environments
❖ Case analysis using match
❖ Defining data structures using struct
❖ Store-passing style

