
Interpreters
October 30, 2018

Interpreters

An interpreter for a programming
language is a procedure that, when
applied to an expression of the language,
performs the actions required to evaluate
that expression.

Meta-circular Interpreters

A meta-circular interpreter is an
interpreter that is written in the same
language that is being interpreted.

Evaluation Strategy

Can we really just substitute the value of a
variable for all occurrences of the variable (use
lexical substitution as an evaluation strategy)?

What happens if we use lexical substitution?

(define	
 x	
 10)	

(define	
 (foo	
 x	
 y)	

	
 	
 	
 	
 (let	
 ((x	
 (+	
 x	
 1)))	

	
 	
 	
 	
 (match	
 y	

	
 	
 	
 	
 	
 	
 	
 ((list	
 5	
 x)	
 (print	
 x))	

	
 	
 	
 	
 	
 	
 	
 ((list	
 10)	
 (print	
 x)))))	

(foo	
 x	
 (list	
 x))

What happens if we use lexical substitution?

(define	
 x	
 10)	

(define	
 (foo	
 10	
 y)	

	
 	
 	
 	
 (let	
 ((10	
 (+	
 10	
 1)))	

	
 	
 	
 	
 (match	
 y	

	
 	
 	
 	
 	
 	
 	
 ((list	
 5	
 10)	
 (print	
 10))	

	
 	
 	
 	
 	
 	
 	
 ((list	
 10)	
 (print	
 10)))))	

(foo	
 10	
 (list	
 10))

Evaluation Strategy

Can we really just substitute the value of a
variable for all occurrences of the variable (use
lexical substitution as an evaluation strategy)?

Not exactly, because we have to worry about
environments…

Environments
(define	
 x	
 10)	

(define	
 (foo	
 x	
 y)	

	
 	
 	
 	
 (let	
 ((x	
 (+	
 x	
 1)))	

	
 	
 	
 	
 (match	
 y	

	
 	
 	
 	
 	
 	
 	
 ((list	
 5	
 x)	
 (print	
 x))	

	
 	
 	
 	
 	
 	
 	
 ((list	
 10)	
 (print	
 x)))))	

(foo	
 x	
 (list	
 x))

global environment

function environment

let environment

case environment

Environments

An environment is a sequence of frames,
each of which is a table of bindings that
associate variables with values.

Environment model of evaluation
Instead of a substitution model of evaluation, we’ll
move to an environment model of evaluation.

Our environment model of evaluation will have two
parts: a rule for evaluating expressions, and a rule
for evaluating functions.

Evaluating compound expressions
Rule for evaluating expressions:
To evaluate a compound expression (other than a
special form), evaluate the subexpressions and then
apply the value of the operator subexpression to
the value of the argument subexpressions.

(This is call-by-value evaluation!)

Evaluating compound functions
Rule for evaluating functions:
To apply a compound function to a set of arguments,
evaluate the body of the function in a new
environment. To construct this environment, extend
the environment part of the function object by a
frame in which the formal parameters of the
function are bound to the actual arguments to which
the function is applied.

Interpreter Project Overview
Week 1
❖ Variables and environments
❖ Evaluation

Week 2
❖ Primitive functions
❖ Special forms

Week 3
❖ Lambda and local binding
❖ Meta-circularity

❖ We’ll be programming in class most days.
❖ Each week’s component is due on Sunday at

10pm.
❖ I will release my solutions so that you can use

them for the next part.
❖ You will be required to write tests for your code.

Your test cases will be graded.

Interpreter Project Overview

Writing test cases
Guidelines for the interpreter project

❖ Keep your tests in interpreter_tests.rkt.

❖ Import the test library using (require rackunit).

❖ You should write 2-3 tests per function, and more
for functions that have particularly tricky edge
cases.

Practice: write test cases for lst-alphabetized?

(define	
 (lst-­‐alphabetized?	
 lst)	

	
 	
 (cond	
 ((<	
 (length	
 lst)	
 2)	
 #t)	

	
 	
 	
 	
 	
 	
 	
 	
 ((string<=?	
 (first	
 lst)	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (first	
 (rest	
 lst)))	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (lst-­‐alphabetized?	
 (rest	
 lst)))	

	
 	
 	
 	
 	
 	
 	
 	
 (else	
 #f)))

Importing modules
In order to run your tests, you will need to import
your definitions from your interpreter file. This
requires two things.

First, make your definitions available to be imported
using (provide (all-defined-out)) at the top of your
interpreter file.

Second, import the definitions using (require
“interpreter.rkt") at the top of your test suite file.

Eval

Eval takes an expression and an environment
as arguments. Based on what kind of
expression it is, eval directs its evaluation.

>	
 (eval	
 '(+	
 1	
 2))	

3

Eval

We will define our own version of eval in the
interpreter project, but Racket also has a built-in eval
function, which takes a quoted expression and
evaluates it.

This only works in the REPL, not in the definitions
window. This is because it needs an environment,
which the REPL makes available, but the definitions
window does not.

Apply

Apply takes a function and a list of arguments
to apply the function to. Primitive functions
are applied directly, while compound
procedures have their subexpressions
evaluated in a new environment.

Apply
We will define our own version of apply in the
interpreter project, but Racket also has a built-in
apply function, which you saw briefly during our
streams class.

>	
 (apply	
 +	
 (3	
 1	
 2))	

6

