LISP 1S OVER HALFA | | T WONDER IF THECQYCLES | | THESE ARE YOR)
CENTURYOLD AND IT .\V_ILL CONTINVE FOREVER), - FATHER'S PARENTHESES
STILL HAS THIS PERFECT, e z fgﬂ\

TIMELESS AIRASUTIT., =2 @

N S35,
| 9 f FEW CODERS FROMEACH
NEW GENERATION RE-
DISCOVERING THE LISP 5«5 FOR A MORE.... CIVILZED AGE.
o xked comic 297
Introduction
September 13, 2018
to Racket

Why are there so many parentheses?

A GODS LAMENT

SOME SAID THE WORLD SHOULD BE IN PERL;
SOME SAID IN LISP

NOW, HAVING GIVEN BCTH A WHIRL,

T HELD WITH THOSE WHO FAVORED PERL.
BUT I FEAR WE PASSEDTO MEN

A DISAPPOINTING FOUNDING MYTH,

AND SHOULD WE WRITE IT ALL AGAIN,

TD ENDIT WITH

A CLOSE -PAREN.

xkcd comic 312

Euclid’s algorithm for GCD

Find greatest common divisor of r1 and r2:

base case: kth step:

If r1 = 0: If r1 and r2 are greater than 0:
return r2 rl / 12

If r2 =0: GCD(r2, remainder)

return rl

Local binding

A let expression binds a set of variables for
use in the body of the let block.

(define (greet str)
(let ((greeting (string-append “hi “ str))
printf(greeting))

Lists

i

(list “apple” “banana” “carrot”)

(list 1 2 3)

(list 1 “carrot” 3 #t “cucumber”)

Lists are recursively defined

A list is either null, or a pair whose second item is a list

Two key methods:

> (first (list 1 2 3))
1

> (rest (list 12 3))
(List1 2)

Local binding

A let expression binds a set of variables for
use in the body of the let block.

(define (greet str)
(let ((greeting (string-append “hi “ str))
printf(greeting))

Anonymous Functions

A lambda expression is an anonymous function.

(define (fn)) is really short for (define fn (lambda))

(define (hello-world) (printf “hello world!”))
(define hello-world (lambda () (printf “hello world!)))

]

Arguments Function body

Local binding, take two

In a let expression, the right-hand side of a
declaration can’t refer to the left-hand side.

If we write:

(let ((a (+ a 5))))

if the a is not defined outside the scope of the let,
then the let will throw an error.

letrec

This is a problem for declaring recursive functions,
since they refer to themselves!

Racket has another local binding environment for
this reason: letrec.

If we write:

(letrec ((a (+ ab))))

The a in the right-hand side refers to whatever
value the a on the left-hand side has.

lab 1

* Due Sunday, September 22nd at 10pm

* Submit through Moodle

* Generally labs will be released during 4th
hour and due the following Sunday:.

2 parts: 6 finger exercises in Part 1
merge-sort in Part 2

+ Bring questions to 4th hour on Monday!

