
Introduction
 to Racket

September 13, 2018

xkcd comic 297

Why are there so many parentheses?

xkcd comic 312

Euclid’s algorithm for GCD

base case:
If r1 = 0:
 return r2
If r2 = 0:
 return r1

kth step:
If r1 and r2 are greater than 0:
 r1 / r2
 GCD(r2, remainder)

Find greatest common divisor of r1 and r2:

Local binding

(define (greet str)
 (let ((greeting (string-append “hi “ str))
 printf(greeting))

A let expression binds a set of variables for
use in the body of the let block.

Lists

(list 1 2 3)

(list “apple” “banana” “carrot”)

(list 1 “carrot” 3 #t “cucumber”)

Lists are recursively defined
A list is either null, or a pair whose second item is a list

Two key methods:
 > (first (list 1 2 3))
 1

 > (rest (list 1 2 3))
 (list 1 2)

Local binding

(define (greet str)
 (let ((greeting (string-append “hi “ str))
 printf(greeting))

A let expression binds a set of variables for
use in the body of the let block.

Anonymous Functions

(define (hello-world) (printf “hello world!”))
(define hello-world (lambda () (printf “hello world!)))

A lambda expression is an anonymous function.
(define (fn)) is really short for (define fn (lambda))

Arguments Function body

Local binding, take two
In a let expression, the right-hand side of a
declaration can’t refer to the left-hand side.

If we write:

(let ((a (+ a 5))))

if the a is not defined outside the scope of the let,
then the let will throw an error.

Letrec
This is a problem for declaring recursive functions,
since they refer to themselves!

Racket has another local binding environment for
this reason: letrec.

If we write:
(letrec ((a (+ a 5))))

The a in the right-hand side refers to whatever
value the a on the left-hand side has.

Lab 1

❖ Due Sunday, September 22nd at 10pm
❖ Submit through Moodle
❖ Generally labs will be released during 4th

hour and due the following Sunday.
❖ 2 parts: 6 finger exercises in Part 1
 merge-sort in Part 2
❖ Bring questions to 4th hour on Monday!

