Recursion and lteration

September 18, 2018

Warm-up: Fizzbuzz

Count up from 0 to n in the following way:
[f the number is divisible by 3, print fizz
[f the number is divisible by 5, print buzz
[f the number is divisible by 3 and 5, print fizzbuzz

Otherwise, print the number

Review: LLambda

Lambda: anonymous function

(lambda (x y) (+ x y))

|]

list of arguments function body

Practice: write an anonymous function that
returns the second item in a list.

Review: Local Binding

Normal local binding: bindings are parallel
(right-hand side is ignorant of left-hand side)

(let ((cat-speak (printf “meow!”))
(dog-speak (printf “woof!”))
(unbound (cat-speak)))

unbound,
going to

throw error

Review: Local Binding

Normal local binding: bindings are parallel
(right-hand side is ignorant of left-hand side)

(let ((bound 1611,(;2’; ;rrll(;w
(lambda (X) QQ named!

(if (= x 0) uh oh! bound is

, L, o undefined here,
(pI‘ intf “zero!) so we have no

(bound (- x 1)))))) way to call the

V\/ function in the
recursive step!

Review: Local Binding

Recursive local binding:
(right-hand side knows that it’s being named)

know
(letrec ((bound I’Im being
(lambda (x) <50 amed

(if (=x 0)
(printf “zero!”)

(bound (- x 1)))))) bound by the
\/ left-hand side,
can be called

recursively

String-reverse using letrec

(define (reverse str) define helper function

(letrec ((helper / helper function arguments
(lambda (str x) “/ .

(if (= x (string-length str)) <— ...,

()

recursive

(string-append &— call
(helper str (+x 1))

(string (string-ref str x)))))))

\ call helper function

(helper str 0)))

Exercise

Rewrite count-up using letrec

(define (count-help x y)
(printf (number->string x))
(f (= x y)
(void)
(count-help (+x 1) y)))

(define (count-up x)
(count-help 1 x))

Recursion versus lteration

How efficient is recursion anyway?

Recursion versus lteration

How efficient is recursion anyway?

Iterative Recursive
> (it-fac 4) > (fac 4)
res = res”1 (* 4 (fac 3)) —
res = res*2 (*4 (3 (fac?2)))

res = res*3 (4 ("3 ("2 (fac1))))

res = res*4 (*4(*3(*21))) /

Tail-recursion

In the tail-recursive version, the multiplication
happens inside of the recursive call, not outside of it.

(define (tail-fac n)
(letrec ((helper
(lambda (n acc)
(if (=1 n)
acc
(helper (-n 1)

(*n acc))))))
(helper n 1)))

Tail-recursion

How efficient is recursion anyway?

Original version Tail-recursive version
> (fac 4) > (tail-fac 4)
(* 4 (fac 3)) —Y (tail-fac3 (4 1))
(*4 (* 3 (fac 2))) —7 (tail-fac 2 (* 3 4))

(*4 ("3 (*2 (fac1)))) (tail-fac 1 (* 2 12))
(F4(3(°21)) — (24)

Exercise

Rewrite string-reverse to be tail-recursive

