
Recursion and Iteration
September 18, 2018

Warm-up: Fizzbuzz
Count up from 0 to n in the following way:
❖ If the number is divisible by 3, print fizz
❖ If the number is divisible by 5, print buzz
❖ If the number is divisible by 3 and 5, print fizzbuzz
❖ Otherwise, print the number

Review: Lambda

Lambda: anonymous function

 (lambda (x y) (+ x y))

list of arguments function body

Practice: write an anonymous function that
returns the second item in a list.

Review: Local Binding
Normal local binding: bindings are parallel
(right-hand side is ignorant of left-hand side)

(let ((cat-speak (printf “meow!”))
 (dog-speak (printf “woof!”))
 (unbound (cat-speak)))

unbound,
going to
throw error

Normal local binding: bindings are parallel
(right-hand side is ignorant of left-hand side)

(let ((bound
 (lambda (x)
 (if (= x 0)
 (printf “zero!”)
 (bound (- x 1))))))

Review: Local Binding

uh oh! bound is
undefined here,
so we have no
way to call the
function in the
recursive step!

I don’t know
I’m being
named!

Recursive local binding:
(right-hand side knows that it’s being named)

(letrec ((bound
 (lambda (x)
 (if (= x 0)
 (printf “zero!”)
 (bound (- x 1))))))

Review: Local Binding

bound by the
left-hand side,
can be called
recursively

I know
I’m being
named!

(define (reverse str)
 (letrec ((helper
 (lambda (str x)
 (if (= x (string-length str))
 “”
 (string-append
 (helper str (+ x 1))
 (string (string-ref str x)))))))
 (helper str 0)))

String-reverse using letrec

define helper function

call helper function

helper function arguments

base
case

recursive
call

Exercise
Rewrite count-up using letrec

(define (count-help x y)
 (printf (number->string x))
 (if (= x y)
 (void)
 (count-help (+ x 1) y)))

(define (count-up x)
 (count-help 1 x))

Recursion versus Iteration
How efficient is recursion anyway?

Recursion versus Iteration
How efficient is recursion anyway?

Iterative Recursive

> (fac 4)

(* 4 (fac 3))
(* 4 (* 3 (fac 2)))
(* 4 (* 3 (* 2 (fac 1))))
(* 4 (* 3 (* 2 1)))

> (it-fac 4)

res = res*1
res = res*2
res = res*3
res = res*4

Tail-recursion

(define (tail-fac n)
 (letrec ((helper
 (lambda (n acc)
 (if (= 1 n)
 acc
 (helper (- n 1)
 (* n acc))))))
 (helper n 1)))

In the tail-recursive version, the multiplication
happens inside of the recursive call, not outside of it.

Tail-recursion
How efficient is recursion anyway?

Tail-recursive versionOriginal version

> (fac 4)

(* 4 (fac 3))
(* 4 (* 3 (fac 2)))
(* 4 (* 3 (* 2 (fac 1))))
(* 4 (* 3 (* 2 1)))

> (tail-fac 4)

(tail-fac 3 (* 4 1))
(tail-fac 2 (* 3 4))
(tail-fac 1 (* 2 12))
(24)

Exercise
Rewrite string-reverse to be tail-recursive

