
Higher Order Functions
September 25, 2018

Warm-up: filter out even numbers
Using filter, write a function that returns all odd
numbers from a list of numbers.

Recap
First-class functions: functions that are treated just like
other values in the language, including being able to
appear in all syntactic environments.

Higher-order functions: functions that take functions as
arguments.

Properties of Map
❖ Input items and return items do not need to be of

the same type

❖ Preserves the length of the original list

Properties of Filter
❖ Function given as argument must return a boolean

❖ Does not preserve the length of list

❖ Returns copies of items from the original list

Fold: returning a single value
Fold is a higher-order function that takes a list and
returns a single value. It is also known as reduce.

> (fold (lambda (x,y) (+ x y)) 0 (list 1 2 3))

 6

function initial value list

Fold: returning a single value
(define (add x y) (+ x y))

(fold add 0 (list 1 2 3))

(fold add (+ 1 0) (list 2 3))

(fold add (+ 2 1) (list 3))

(fold add (+ 3 3) (list))

Foldl and Foldr

(define (add x y) (+ x y))

(foldr add 0 (list 1 2 3))
(foldr add (+ 3 0) (list 2 3))
(foldr add (+ 2 3) (list 3))
(foldr add (+ 1 5) (list))

(foldl add 0 (list 1 2 3))
(foldl add (+ 1 0) (list 2 3))
(foldl add (+ 2 1) (list 3))
(foldl add (+ 3 3) (list))

Properties of Fold
❖ Returns a single value of any type

❖ Takes an initial value as an argument, as well as
the list and the function to apply

❖ Function supplied must have two arguments

Fold’s initial value argument
❖ What return type do you want?

❖ What initial value do you need?

Exercise: list and
Write a version of and that takes a list.

Return true if all items in the list are true and false
otherwise.

Use one of the built-in higher-order functions that
we have discussed.

Exercise: list xor
Write a function that returns true if and only if 1
item in the list is true.

Use one of the built-in higher-order functions that
we have discussed.

Properties of Map and Fold
One property of map is that mapping function f over list
l, and then mapping function g over the result, is
equivalent to mapping the composition of f and g over l.

(define (add-5 x) (+ x 5))
(define (multiply-by-10 x) (* x 10))

(define numbers (list 1 2 3))

> (map multiply-by-10
 (map add-5 numbers))

 (60 70 80)

> (map (lambda (x)
 (multiply-by-10 (add-5 x)))
 numbers
 (60 70 80)

Properties of Map and Fold
Similarly, mapping function f over list l and then folding
function g over the result is equivalent to folding the
composition of f and g over l.

(define (add-5 x) (+ x 5))
(define (sum x y) (+ x y))

(define numbers (list 1 2 3))

>(fold sum
 0
 (map add-5 numbers))
 21

> (fold (lambda (x y)
 (+ (add-5 x) y))
 numbers
 21

