Higher Order Functions

September 25, 2018

Warm-up: filter out even numbers

Using filter, write a function that returns all odd
numbers from a list of numbers.

Recap

First-class functions: functions that are treated just like
other values in the language, including being able to
appear in all syntactic environments.

Higher-order functions: functions that take functions as
arguments.

Properties of Map

Input items and return items do not need to be of
the same type

Preserves the length of the original list

Propertes of Filter

Function given as argument must return a boolean
Does not preserve the length of list

Returns copies of items from the original list

Fold: returning a single value

Fold is a higher-order function that takes a list and
returns a single value. It is also known as reduce.

function initial value list

A

> (fold (lambda (x,y) (+ xy)) 0 (list 12 3))
6

Fold: returning a single value

(define (add x y) (+ x y))

(fold add 0 (list 12 3))
(fold add (+ 1 0) (list 2 3))
(fold add (+ 2 1) (list 3))
(fold add (+ 3 3) (list))

Foldl and Foldr

(define (add x y) (+ x y))

(foldl add 0 (list 1 2 3)) (foldr add 0 (list 1 2 3))
(foldl add (+ 1 0) (list 2 3)) | | (foldr add (+ 3 0) (list 2 3))
(foldl add (+ 2 1) (list 3)) (foldr add (+ 2 3) (list 3))
(foldl add (+ 3 3) (list)) (foldr add (+ 1 5) (list))

Propertes of Fold

Returns a single value of any type

Takes an initial value as an argument, as well as
the list and the function to apply

Function supplied must have two arguments

Fold’s initial value argument

“ What return type do you want?

* What initial value do you need?

Exercise: list and

Write a version of and that takes a list.

Return true if all items in the list are true and false
otherwise.

Use one of the built-in higher-order functions that
we have discussed.

Exercise: list xor

Write a function that returns true if and only if 1
item in the list is true.

Use one of the built-in higher-order functions that
we have discussed.

Properties of Map and Fold

One property of map is that mapping function f over list
I, and then mapping function g over the result, is

equivalent to mapping the composition of f and g over 1.

(define (add-5 x) (+ x 5))
(define (multiply-by-10 x) (* x 10))
(define numbers (list 1 2 3))

> (map multiply-by-10 > (map (lambda (x)
(map add-5 numbers)) (multiply-by-10 (add-5 x)))
b
(60 70 80) numbers

(60 70 80)

Properties of Map and Fold

Similarly, mapping function f over list 1 and then folding

function g over the result is equivalent to folding the
composition of f and g over 1.

(define (add-5 x) (+ x 5))
(define (sum x y) (+ x y))
(define numbers (list 1 2 3))

>(fold sum > (fold (lambda (x y)
0 (+ (add-5 x) y))
(map add-5 numbers)) numbers

21 21

