Reading Data

September 20, 2018

Reading Data

Reading and writing to files
Quote

Print versus write

Reading input from file

Open a file:
(define input (open-input-file “text.txt")
Read a single line from the file:
(read-line input)
Close file:

(close-input-port out)

Reading input from file

Open a file:
(define input (open-input-file “text.txt")
Read first 100,000 characters of file as a string:
(read-string 100000 input)

(If file contents are shorter than 100,000, all of the file
will be read)

Writing to file

Open a file:
(define outfile (open-output-file “text.txt”))
Write a string to file:
(write “cat” outfile)

(Throws an error if file already exists!)

Overwriting to existing file

Open a file:

(define outfile
(open-output-file #:exists ‘truncate “text.txt”)

Write a string to file:

(write “cat” outfile)

(‘“truncate overwrites existing contents of file)

Appending to existing file

Open a file:

(define outfile
(open-output-file #:exists ‘append “text.txt”)

Write a string to file:
(write “cat” outfile)

(‘append appends to end of existing file contents)

(Quoting

Quote is a way to express data literals.
Given any Racket expression, quote returns the
contents of the expression as data.

The quoted data remains unevaluated.

(Quoting

(quote 3) =>3

(quote “hi") => "hi"

(quote a) => a

(quote (+ 3 4)) => (list '+ 3 4)
(quote (a b c)) => (list 'a 'b 'c)

(quote (define x 25)) => (list 'define 'x 25)

(quote (lambda (x) (+ x 3))) =>

(list Tambda (list 'x) (list '+ 'x 3))

a humber

a string

a symbol

d
d

list

list

a list

a list

Symbols

Quoting a variable name does not produce a string,
but another datatype: a symbol.

[f we didn’t have this datatype, we wouldn’t be able
to distinguish quoted names from strings.

'(define x 10) => (list 'define 'x 10) 'define is a symbol
'("define" x 10) => (list "define" 'x 10) "define" is a string

Writing a Racket program to file

Quoting gives us a way to write out Racket
programs without evaluating them— which is
exactly what we want to do when we write
programs to file.

Shorthand for Quote

"is short-hand for (quote):

> (first ' 'road)
‘quote

> (first '(quote road))
'quote

Printversus Write

So far we’ve only used (printf), which is a print
method for strings.

Racket actually has two distinct print-like methods:
print and write. These can be applied to data of any

type.

Printversus Write

Print prints a value in the same way that is it printed
by the REPL.

Write prints a value in such a way that read on the
output produces the value back.

>(print #f) >(write #f)
#f #f
>(print (quote >(write (quote
(lambda (x)(x)))) (lambda (x)(x))))

'(lambda (x)(x)) (lambda (x)(x))

