
Reading Data
September 20, 2018

Reading Data
❖Reading and writing to files
❖Quote
❖Print versus write

Reading input from file
Open a file:

(define input (open-input-file “text.txt")

Read a single line from the file:

(read-line input)

Close file:

(close-input-port out)

Reading input from file
Open a file:

(define input (open-input-file “text.txt")

Read first 100,000 characters of file as a string:

(read-string 100000 input)

(If file contents are shorter than 100,000, all of the file
will be read)

Writing to file
Open a file:

(define outfile (open-output-file “text.txt”))

Write a string to file:

(write “cat” outfile)

(Throws an error if file already exists!)

Overwriting to existing file
Open a file:

(define outfile
 (open-output-file #:exists ‘truncate “text.txt”)

Write a string to file:

(write “cat” outfile)

(‘truncate overwrites existing contents of file)

Appending to existing file
Open a file:

(define outfile
 (open-output-file #:exists ‘append “text.txt”)

Write a string to file:

(write “cat” outfile)

(‘append appends to end of existing file contents)

Quoting
Quote is a way to express data literals.
Given any Racket expression, quote returns the
contents of the expression as data.

The quoted data remains unevaluated.

Quoting
(quote 3)
(quote “hi")
(quote a)
(quote (+ 3 4))
(quote (a b c))

(quote (define x 25))

(quote (lambda (x) (+ x 3))) =>

a number
a string

a symbol
a list
a list

a list

a list

=> 3
=> "hi"
=> a
=> (list '+ 3 4)
=> (list 'a 'b 'c)

=> (list 'define 'x 25)

(list 'lambda (list 'x) (list '+ 'x 3))

Symbols
Quoting a variable name does not produce a string,
but another datatype: a symbol.

If we didn’t have this datatype, we wouldn’t be able
to distinguish quoted names from strings.

'(define x 10) => (list 'define 'x 10) 'define is a symbol
'("define" x 10) => (list "define" 'x 10) "define" is a string

Writing a Racket program to file
Quoting gives us a way to write out Racket
programs without evaluating them— which is
exactly what we want to do when we write
programs to file.

Shorthand for Quote

' is short-hand for (quote):

> (first ' 'road)
'quote

> (first '(quote road))
'quote

Print versus Write
So far we’ve only used (printf), which is a print
method for strings.

Racket actually has two distinct print-like methods:
print and write. These can be applied to data of any
type.

Print versus Write
Print prints a value in the same way that is it printed
by the REPL.

Write prints a value in such a way that read on the
output produces the value back.

>(print #f)
 #f
>(print (quote
 (lambda (x)(x))))
 '(lambda (x)(x))

>(write #f)
 #f
>(write (quote
 (lambda (x)(x))))
 (lambda (x)(x))

