coNOULEA, WN =

#lang racket
(struct store (hash last) #:transparent)

(define (make-store)
(store (make-immutable-hash) -1)) ; our store entries will start at 0

(define s-init (make-store))
s—init

(define (hash-update old k v)
(let ((oldpairs (filter (lambda (x) (not (equal? (first x) k))) ; drop
existing k entry if any
(hash—->1ist old))))
(make—immutable-hash (cons (list k v) oldpairs)))) ; add new k entry
and return

(hash-update (store-hash s-init) 0 30)

(define (add-to-store old v)
(let ((last (store-last old)))
(store (hash-update (store-hash old) (+ 1 last) v) ; add new entry to
hash
(+ 1 last) ; update last identifier
)))

; As always, this returns a copy, not a modified store!

(add-to-store s—-init 10)

(define s@ (add-to-store s-init "Calvin"))
(define s1 (add-to-store s@ "Captain Haddock"))
sl

(define (print-contents s)
(printf (foldl (lambda (x y)(string-append (number—>string (first x))
(if (string? (second x))
(second x)
(number->string (second
x)))
Il\nll
y))

(hash->1list (store-hash s)))))
(print-contents s1)

(define (update-store old k v)
(let ((last (store-last old))
(h (store-hash old)))
(store (hash-update h k v) last)))



48
49
50
51
52
53
54
55
56
56
57
58
58
59
60
61
62
63
64
65
66
67
67
68
69
69
70
71
72
73
74
75
76
77
78
79
79
80
81
82
83
84
85
86
87
87
88
89
90
91
92

(print-contents (update-store s1 @ "Peaches"))

(define (get-value s k)
(first (hash-ref (store-hash s ) k)))

(get-value s1 @) ; the update-store call above did not change the value!
; Implementing banking using store-passing style
(define (open-bank)

(make-store))

(define bank-init (open-bank))
bank-init

(define (open-account bank)
(let ((updated (add-to-store bank 0))) ; new accounts start with 0
balance
(let ((acctno (store-last updated)))
(printf (string-append "Opened account no.
acctno) ".\n"))
updated))) ;return updated bank

(number->string

(define bank@ (open-account bank-init))
(define bankl (open-account bank@))
(define bank2 (open-account bankl))

(print-contents bank2)

(define (deposit bank acct amt)

(printf (string-append "Deposited " (number->string amt)
(number->string acct) ".\n"))

(update-store bank acct (+ amt (get-value bank acct))))

in acct.

(define bank3 (deposit (deposit (deposit bank2 @ 100) 1 25) 2 50))
(print-contents bank3)

(define (withdraw bank acct amt)
(printf (string-append "Withdrew

(number->string acct) ".\n"))
(update-store bank acct (- (get-value bank acct) amt)))

(number->string amt) " from acct.

(define bank4 (withdraw bank3 2 100))

(print-contents bank4)



93

94 | (define (transfer bank from to amt)

95 (printf (string-append "Tranferred" (number->string amt)

96 "to acct. " (number->string to)

97 " from acct. " (number->string from) ".\n"))
98 (let ((withdrew (withdraw bank from amt)))

99 (deposit withdrew to amt)))

100

101 | (define bank5 (transfer bank4 0 2 101))

(print-contents bank5)
103 | (transfer bankl @ 1 100)



