
#lang racket

(define outfile (open-output-file #:exists 'truncate "class.txt"))

(write "cat" outfile)

(write (quote (string-append "cat" "!")) outfile)

(close-output-port outfile)

(define infile (open-input-file "class.txt"))

(read infile)

(define input (read infile))

input

'input

'(1 2 3)

You can call (eval) to evaluate the result,
but only in the REPL (for reasons we'll learn later).

(eval input)

(write #f)

#f

(print #f)

(printf "\n")

(write (quote (lambda (x)(+ x 5))))

(printf "\n")

(print (quote (lambda (x)(+ x 5))))

(printf "\n")

(write (list 1 2 3))

(printf "\n")

(print (list 1 2 3))

'(1 2 3)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47



(define five 5)
48
49
50


