
#lang racket

(define outfile (open-output-file #:exists 'truncate "class.txt"))

(write "cat" outfile)

(write (quote (string-append "cat" "!")) outfile)

(close-output-port outfile)

(define infile (open-input-file "class.txt"))

(read infile)

(define input (read infile))

input

'input

'(1 2 3)

You can call (eval) to evaluate the result,
but only in the REPL (for reasons we'll learn later).

(eval input)

(write #f)

#f

(print #f)

(printf "\n")

(write (quote (lambda (x)(+ x 5))))

(printf "\n")

(print (quote (lambda (x)(+ x 5))))

(printf "\n")

(write (list 1 2 3))

(printf "\n")

(print (list 1 2 3))

'(1 2 3)
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(define five 5)
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